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The flux-corrected transport (FCT) technique and the alternating-direction explicit
(ADE) method are coupled through a time-splitting technique. This new combination
of both methods has been used successfully to solve the fully coupled Navier–Stokes
system applied to ionospheric thermal plasma flows with a viscosity and strong heat
conduction. The combined scheme gives convergent solutions within the time step set
for nonlinear stability of the corresponding nondissipative flow fields, and the time-
dependent solutions are consistent with other model results using different methods.
To have a quantitative view of the flux-limiter of Boris’ FCT version, a concept of
local variation is defined to identify local extrema. The total variation diminishing
scheme finds unique entropy solutions for vanishing dissipation. The ADE scheme,
however, enables us to handle dissipation when the FCT technique alone can be
inappropriate. c© 1998 Academic Press

1. INTRODUCTION

The flux-corrected transport (FCT) technique, developed by Boris and Book [1], solves
nonlinear hyperbolic conservation laws with an explicit implementation, a primitive variable
approach, a second-order accuracy in a smooth domain, and a high resolution in shocks
and contact discontinuities. Based on the merits of this scheme, it is widely used in space
physics research, particularly in modeling the earth’s ionospheric thermal plasma flows.

In the upper atmosphere, solar extreme ultraviolet (EUV) radiation ionizes various neu-
tral constituents, producing ion and electron pairs and forming the ionosphere. At low alti-
tudes (≤150 km), the plasma concentrations are mainly determined by local photochemical
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TABLE I

Dynamic Range of Plasma and Neutral Parameters at Mid-Latitudes

Parameter E Region F region peak Plasmasphere

Ion species NO+, O+
2 , N+

2 O+ H+, He+

Neutral species N2, O2 O H, He
ne(cm−3) 102–105 104−106 102−104

nn(cm−3) 5 × 10−11 109 105

Te(K) 102–103 103 103−104

Ti(K) 102–103 103 103−5 × 103

Tn(K) 102–103 5 × 102−103 5 × 102−2 × 103

Electron heat flux (eV cm−2 s−1) 105–1010 105−1011 105−1011

Exchange flux (cm−2 s−1) 0 −108−108 −108−108

Plasma condition Weakly ionized Partially ionized Fully ionized

reactions, but as height increases, transport becomes dominant. Since the gyro-frequencies
of the charged particles are much larger than the interparticle collision frequencies, the dif-
ferent ion and electron species are confined to flow along the geomagnetic field. The flowing
plasma undergoes photochemical reactions, charge exchanges, particle interactions, as well
as external heating and cooling processes. As a result of charge exchange and transport, the
plasmasphere is formed, which extends to several earth radii along dipole-like geomagnetic
field lines. Despite the different names, the ionosphere and plasmasphere are essentially
composed of plasma that originates in the earth’s upper atmosphere. Formulations regarding
the basic physics, chemistry, and transport processes that are relevant to the ionosphere and
plasmasphere are given, for example, by Schunk [2].

In general, characteristic distributions of the thermal plasma are functions of latitude,
longitude, altitude, and solar zenith angle. To give some general concept about the plasma
and neutral parameters at mid-latitudes, we list these in Table I for the ionosphericE region
(100–150 km), theF region (150–1000 km), and the plasmasphere (above 1000 km along
dipole field lines). The range of values is to account for hour-to-hour, season-to-season, and
year-to-year variabilities.

During the last 20 years, there were several attempts at modeling the nonlinear transport
features of ionospheric plasma flows. In modeling the poststorm plasmaspheric refilling
process, the FCT technique was used to solve the coupled continuity and momentum equa-
tions of the hyperbolic type [3]. Shock waves were found during the initial transient process
of replenishing an empty magnetic flux tube. The FCT technique was also used to model
supersonic thermal plasma flows, as in the polar wind [4]. However, these solutions were
based on inviscid flow assumptions and simplified energy conservation laws. Although the
FCT technique can be conveniently applied to model some ionospheric reactive plasma
flows, it was, however, originally designed for solving hyperbolic systems. This limits its
direct application in modeling ionospheric plasma transport due to the existence of viscosity
and nonlinear heat conduction, which are hard to handle with an explicit hyperbolic solver.
Other high-resolution methods, like the Godunov method with an approximate Riemann
solver, were also used in numerical simulations of thermal plasma flows in space physics
[5]. However, the Godunov method requires extra manipulations at each time step on eigen-
value problems, which is time consuming. In addition, this method was also designed for
idealized hyperbolic systems.
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Since heat conduction is of particular importance in the ionosphere and plasmasphere,
it should be solved simultaneously with the other transport processes for time-dependent
simulations. Under normal situations, viscous effects may not be important, but they tend
to increase with altitude and counteract discontinuities arising from nonlinear convection.
Based on these considerations, we choose the Navier–Stokes systems derived from Schunk’s
13-moment equations [2] as our mathematical model and seek methods to find simultaneous
solutions of mixed hyperbolic and parabolic types of continuity, momentum, and energy
equations. Since the FCT technique can handle nonlinear convection and reacting sources,
our interest is to extend its capability by coupling it to other methods so that dissipation can
be included. In addition, considering the explicit nature of FCT, another explicit scheme
is desirable. It turns out that the alternating-direction explicit (ADE) method developed by
Barakat and Clark [6] is particularly convenient for our systems of equations.

We first introduce our systems of conservation laws. Then, we look into the FCT and
the ADE schemes. Next, we illustrate the way we couple the two schemes to solve systems
of the mixed type, and we also apply the numerical technique to a specific space physics
problem. Finally, the results we obtain using an FCT-ADE technique are compared to those
obtained with a widely used completely implicit method.

2. EQUATIONS

The Navier–Stokes equations for multispecies thermal plasma flows can be derived by
truncating the 13-moment transport equations [2]. For plasma flow along a diverging mag-
netic flux tube, the truncated system of continuity, momentum, and energy equations be-
comes

n̄t = −(n̄u)x + Aα − βn̄ (1)

(n̄u)t = −(n̄uu)x +
{
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m

[
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where the quantities are the atomic ion (e.g., O+ and H+) concentration̄n, particle fluxn̄u,
and partial pressurēp; overbars denote quantities multiplied byA, the cross-sectional area of
the flux tube. The bulk velocityu is derived from the particle flux and the species temperature
T can be obtained from̄p = n̄κT , whereκ is the Boltzmann constant. Subscriptt refers to
a partial derivative with respect to time and the subscriptx refers to a partial derivative with
respect to space along the magnetic flux tube. In Eq. (1)α andβ denote the ion production
rate and the loss frequency due to photochemical reactions and resonant charge exchange,
respectively. In Eq. (2),E refers to the polarization electric field, which can be derived
from the electron momentum equation,g(r) is the gravity at pointr , andη is the viscous
coefficient, which depends on the species density and temperature as well as the effective
collision frequency defined by Schunk [2]. The quantitiesνk and8k are the momentum



          

382 ZHOU, WICKWAR, AND SCHUNK

transfer collision frequency and the velocity-dependent correction factor, respectively. The
summation over the indexk is for all of the ion and neutral species except the one being
simulated. In Eq. (3),λ represents the heat conductivity, which is normally proportional to
the ion or electron temperature to the power of 5/2. The termδU/δt represents the rate of
energy transfer due to elastic collisions between the different charge and neutral species.
The quantitiesQ andL refer to the local electron heating and cooling rates, respectively.

The electron density can be determined from the quasi-neutrality conditionne = ∑
k nk

where subscript e indicates the electron species,k = 1, 2, 3, 4, 5 indicate H+, O+, N+
2 ,

O+
2 , and NO+, respectively. Likewise, the electron bulk velocity can be determined by the

ambipolar flow condition asue = (1/ne)
∑

k nkuk. In Eq. (2),E represents the polariza-
tion electric field between ion and electron species,E = −(1/eNe)(∂pe/∂x) which can be
derived from the electron momentum equation by dropping all the inertial terms.

Equations (1) through (3) are Navier–Stokes equations. Equation (1) is the conservation
law for the plasma species concentrations with allowance for sources. Equation (2) is a
momentum conservation law, which includes a viscous term that is normally weaker than
the convection term in the domain of smooth solutions. The plasma temperature can be
found by solving Eq. (3) for the partial pressure, but the nonlinear heat conduction term
has to be included, in addition to the convection term and the various heating and cooling
processes.

If the equations are dominated by dissipative processes over convective transport, one
can find methods other than FCT to solve them. Some implicit schemes work well in
solving systems of the parabolic type. In ionospheric thermal plasma flows, viscosity is
often weak, in comparison with other terms in the momentum conservation law, and one
can attempt to neglect it and solve the momentum equation by the FCT technique alone.
In contrast, the energy equations, particularly the electron equation, are dominated by heat
conduction, which the FCT technique cannot handle well. Implicit algorithms work well for
heat conduction, but they require solving a block-tridiagonalized matrix at each time step
if one wants to solve the system simultaneously. Most implicit schemes work well when
the domain of dependence is large [7, 8], but numerical smearing is inevitable when the
flow becomes inviscid. Considering all of these issues, we looked for a method that works
well for both nondissipative and strongly dissipative systems, and the coupled FCT–ADE
method appears to be the most appropriate.

3. THE FLUX-CORRECTED TRANSPORT TECHNIQUE

Considering a convected quantityu(x, t) with spatial variablex and temporal variablet ,
its simplest evolution is guided by a scalar conservation law of the form

ut + f (u)x = 0, (4)

where f (u) is the flux function ofu.
The two-level explicit difference scheme applicable to Eq. (4) can be written as

Un+1
j = Un

j − k

h
[F(Un; j ) − F(Un; j − 1)], (5)

whereU is normally the cell averaged value ofu, h is the grid spacing,k is the time step,
andF is the numerical flux function of two or more adjoining grid dataU , which is a natural
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result of the finite domain of dependence of the convection process. To avoid converging
to a nonsolution,F is normally expressed in conservation form; theory and examples have
been given by LeVeque [9] and references therein.

Due to the nonlinearity of Eq. (4), the convergence of Eq. (5) requires a consistent and
conservative numerical method to be TV-stable; that is, the total variation of all the grid
functions,U , defined overN discrete grids of the whole computational domain,

TV(U ) = sup
N∑

j =1

|U j − U j −1|, (6)

is at any time uniformly bounded by the total variation of the initial data. To guarantee that
a numerical method has all of the above properties, the total variation diminishing (TVD)
concept is broadly used as a quantitative description for algorithms designed for a nonlinear
convection process. One importance of TVD is that a true solution to a scalar conservation
law has this property; i.e., entropy solutions or vanishing viscosity solutions of Eq. (4) have
nonincreasing total variations. Another feature of TVD is that any TVD method has the
mathematical property of monotonicity preserving, which guarantees physical positivity
in any convective transport process. This is very important for inviscid flow, where some
second-order methods like Lax–Wendroff may fail in preserving monotonicity arising from
numerical dispersion, particularly near discontinuities. Although these algorithms are of
second-order accuracy for scalar conservation laws, they are of third-order accuracy for
an appropriate dispersive equation, as was shown by the theory of modified equation [10].
Hence, oscillations are inevitable when using these algorithms. Once oscillations occur,
total variations of the grid function also increase with time, and thus the algorithms are not
TVD nor monotonicity preserving. As a result of numerical oscillations, a negative mass
may occur, which violates physical positivity.

To evaluate the quality of an algorithm, another important criterion besides TVD concerns
the spatial resolution, where at least second-order accuracy is needed on smooth solutions
and discontinuities are accurately resolved. First-order approximations like the upwind
method have been shown to satisfy the TVD and, hence, are monotonicity preserving, but
they introduce numerical diffusion into the grid function, which may grow particularly
large near a discontinuity so that nonlinear waves like shocks or contact discontinuities are
severely smeared. Hence, they are not a high-resolution method.

To obtain a method that satisfies TVD and has a high resolution, one can use a high-order
scheme for smooth solutions and a low-order scheme to increase the amount of numerical
dissipation in the neighborhood of discontinuities to prevent numerical dispersion. A pos-
sible approach is to introduce some artificial viscosity into a known high-order numerical
scheme, say, the Lax–Wendroff scheme, and then the numerical scheme will have the form

Un+1
j = Un

j − k

h
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. (7)

In Eq. (7), ε j +1/2 = k fu(u)/h represents the courant number, which never exceeds 1
in any explicit algorithm due to the finite characteristic speed offu(u). The last term
represents the artificial viscosity added to the scheme, which will vanish whenk approaches
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zero. Although for constantQ Eq. (7) remains second-order accurate, it is not TVD nor
monotonicity preserving, as was stated in Godunov’s theorem; any linear, monotonicity
preserving method should be at most first-order accurate. Therefore, the properties of TVD
and high resolution seem to be mutually exclusive for linear methods. For the nonlinear
artificial viscosity approach, however, it is not obvious how to determine the nonlinear
viscosity coefficientQ(U ; j ) so that it introduces just enough dissipation to satisfy TVD
without causing unnecessary smearing.

To circumvent this dilemma, many nonlinear algorithms were invented. These algorithms
are intuitive and usually there is a close connection between methods developed by quite
different means. The two categories of flux-limiter and slope-limiter methods [9] are good
examples of these and possess features of both TVD and high resolution. We present here
the flux-limiter method developed by Boriset al. [12] in the following notes.

Any high-order numerical flux function,FH, can be viewed as consisting of the low-order
flux, FL, plus a correction as

FH(U ; j ) = FL(U ; j ) + [FH(U ; j ) − FL(U ; j )]. (8)

In the flux-limiter method, a flux limiting process is applied to the flux difference in Eq. (8)
so that it can be written as

F(U ; j ) = FL(U ; j ) + 8(U, ∇U ; j )[FH(U ; j ) − FL(U ; j )], (9)

where8(U, ∇U ; j ) represents the flux-limiter, which functionally depends on the grid
function U and its spatial gradient. If8 approaches 1, Eq. (9) represents a high-order
flux function applicable whereverU shows smooth distributions over some computational
domain. On the other hand, if8 approaches 0, then the flux function (9) degrades to a
low-order numerical flux, which may be used in the vicinity of a discontinuity to maintain
TVD. For 8 between 0 and 1 exclusively, Eq. (9) remains first-order accurate.

In the version of Boris and others [11], the low-order flux function can be expressed as a
combination of the upwind flux and the Lax–Wendroff flux, where the upwind flux can be
written as

FUW
(
Un

j ,Un
j +1

) = 1

2
λ j +1/2

(
Un

j + Un
j +1

) − 1

2
|λ j +1/2|

(
Un

j +1 − Un
j

)
(10)

and whereλ j +1/2 represents the characteristic speed evaluated at the interface between
grids j and j + 1. Equation (10) is more diffusive than the Lax–Wendroff flux, which can
be written as

FLW
(
Un

j ,Un
j +1

) = 1

2
λ j +1/2
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Un

j + Un
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) − k

2h
λ2
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The low-order flux-function chosen by Boriset al. [11] can be written as

FL
(
Un

j ,Un
j +1

) = 1

2
λ j +1/2

(
Un

j + Un
j +1

) − γ j +1/2
(
Un

j +1 − Un
j

)
, (12)

whereγ j +1/2 represents the numerical diffusion coefficient, which varies between1
2|λ j +1/2|

and k
2hλ2

j +1/2, so that Eq. (12) gives a first-order numerical flux that is less diffusive than (10)
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and less dispersive than (11). The practical choice of the numerical diffusion coefficient
γ j +1/2 given by Boris and Book [12] was

γ j +1/2 = h

k

(
1

6
+ 1

3
ε2

j +1/2

)
. (13)

This choice brings just a sufficient amount of numerical diffusion into the computational
domain so as to prevent unphysical oscillations, to ensure physical positivity near a steep
change of the grid function, and to maintain TVD. Nevertheless, the extra numerical dif-
fusion resulting from this low-order numerical flux function can deteriorate solutions at
domains of a smooth grid function. To remove extra numerical diffusion and keep second-
order accuracy on a smooth domain, a flux-limiting or flux-correcting process is followed.
Using the Lax–Wendroff flux function (11) asFH and subtractingFL given in (12) results
in a numerical flux function of the form

FH(U ; j ) = FL + µ j +1/2
(
Un

j +1 − Un
j

)
, (14)

where the term added toFL represents the antidiffusion defined by Boriset al. [11], with
the antidiffusive coefficient chosen as

µ j +1/2 = h

k

(
1

6
− 1

6
ε2

j +1/2

)
. (15)

With use of (13) and (15), Eq. (14) reproduces the Lax–Wendroff numerical flux function.
In other words, the antidiffusive coefficient (15) gives the maximum antidiffusion possible
without violating TVD on a smooth domain. At a discontinuity, however, it requires a
correction; otherwise the antidiffusive flux chosen above tends to create or accentuate local
extrema. Thus, a flux-limiter, or flux-corrector, is introduced to replace the antidiffusive
flux in (14), which prevents unphysical oscillations at the vicinity of a discontinuity. The
flux-limiter given by Boriset al. [11] can be written as

f c
j +1/2 ≡ S · max

{
0, min

[
S

h

k

(
U L

j +2 −U L
j +1

)
,
∣∣µ j +1/2

(
U L

j +1 −U L
j

)∣∣, S
h

k

(
U L

j −U L
j −1

]}
(16)

with S = sign
(
U j +1 − U j

)
, superscriptL refers to intermediate values calculated with the

low-order flux (12), which reduces the residual diffusion even further [11]. Equation (16)
was designed to filter local maxima or minima and to prevent large antidiffusion when a
sudden change in the grid function occurs between gridsj and j + 1.

To have a more intuitive and quantitative view of Eq. (16), we introduce here an absolute
local variation function LV, as opposed to a total variation function, as

LV

(
U ; j + 1

2

)
=

m∑
k=−m

|U j +k+1 − U j +k| (17)

which samples a particular segment of the total variation between grid pointsj − m to
j +m+1, with the length depending on them value. The first quantitative sense of Eq. (17)
is its capability of identifying local extrema when referred to a monotone data profile. It
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is easy to see that any monotone change bounded by the two end data points,j − m and
j + m+ 1, has the same value of absolute local variation, above which are contributions of
local extrema. Henceforth, any local maxima or minima can be identified by the difference
between the absolute local variation defined in (17) and the absolute local variation of the
two end data pointsj −mand j +m+1. Thus, we have the following relative local variation
concept, or simply the local variation,

LV
(

U ; j + 1

2

)
=

m∑
k=−m

|U j +k+1 − U j +k| − |U j +m+1 − U j −m| (18)

which describes the relative deviation of the grid function from a monotone change bounded
by the two end data points. Obviously, any local maxima or minima can lead to the value
of LV greater than 0, while a monotone change always makeLV vanishing. The local
variation function we have introduced is defined at the interface between cellsj and j + 1.
By choosing four neighboring grid points around the interface, we can identify all the
extrema as Eq. (16) does. As long asLV is greater than 0, we add in all the antidiffusion,
which acts to eliminate local extrema the same way that Eq. (16) does, and hence, a TVD
scheme is maintained.

Local variation can single out local extrema, but cannot distinguish shocks or contact
discontinuities from smooth variations because both are monotone andLV vanishes. The
identification of a shock or contact discontinuity from other monotone profiles is usually
done by comparing the spatial gradients at adjoining data pairs. If a gradient at the interface
is much larger than values at the two neighboring interfaces, the antidiffusion is held at the
smallest value of the gradient to maintain a certain amount of numerical diffusion in the
flux function to prevent oscillations. Denoted by∇, the difference between two neighboring
points, or the absolute local variation of the adjoining data pair, Eq. (16) can be expressed
as

Fc
j +1/2(U ; j ) = 0 if LV > 0 (19)

Fc
j +1/2 ≡ min

[∣∣∇U L
j +3/2

∣∣h/k,
∣∣∇U L

j +1/2

∣∣µ j +1/2,
∣∣∇U L

j −1/2

∣∣h/k
]

if LV = 0. (20)

The final numerical flux, including the limiter in Boris’s version, can be written as

F(Un; j ) = FL(Un; j ) + Fc
j +1/2. (21)

For LV > 0, Eq. (21) represents a low-order flux-function (upwind) given by (12); for
LV = 0, Eq. (21) represents a high-order flux-function (Lax–Wendroff) given by (11). The
FCT version given by Boris is implemented by substituting (21) into (5). Its TVD and high
resolution qualities are established through the above analysis.

Although limiter (19) filters local extrema, it also eliminates real physical extrema. In
addition, determining a discontinuity by Eq. (20) relies subjectively on intuition. As a
matter of fact, the clipping effect at physical extrema and the errosive effect at neighbors of a
discontinuity become new problems, as shown by passive convection tests in [11]. Although
the flux-limiter was improved by Zalesak [13] and Kunhardtet al. [14], particularly in
preserving local physical extrema, there are still hard problems to be solved. When applied
to ionospheric thermal plasma flows, however, the inaccuracy caused by a flux-limiter is
not important due to the existence of physical dissipation. The above notes were presented
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to help explain the flux-corrected transport technique developed by Boris, so that it can
be used appropiately. Although the proposed local variation may be useful in exploring a
more precise flux-limiter, a further investigation of inviscid algorithms is not in the current
research.

4. THE FCT–ADE METHODS

As mentioned above, the flux-corrected transport technique can be applied to solve the
nonlinear convection process efficiently. However, a problem arises when we apply this
technique to solve the Navier–Stokes system of Eqs. (1), (2), and (3) with dissipation terms
included. Unlike convection, mathematically, viscosity and heat conduction are represented
by second-order spatial derivative terms; computationally, they have an infinite domain of
dependence; and physically, they transport momentum and energy through thermal mo-
tion guided by statistical mechanics. Although particle diffusion is not explicitly shown in
Eqs. (1), (2), and (3), it can be evaluated when the convective velocity is sufficiently small.
All dissipative processes have a similar mathematical formulation. If we separate these
processes from convection and local chemical reactions, then a typical dissipation process
can be written as

ut = [α(u)ux]x, (22)

where the dissipative coefficient,α(u), is normally a function of the dependent variableu.
In contrast to the numerical dissipation brought about by a low-order convection scheme,
the physical dissipation does not vanish as the grid is successively refined.

To solve Eq. (22), an explicit scheme, forward in time and centered in space (FTCS), was
adopted and incorporated with the FCT technique to model the two-dimensional flame pro-
cess by Patnaiket al. [15]. The detailed model subcycles the viscosity and heat conduction
processes within the time step set up for stability of the nonlinear convection processes.
The advantages of this explicit scheme are the ease of programming and computational
time saving, compared with an implicit scheme. Defects of this technique are its first-order
truncation error and stability limitations. An implicit scheme yields second-order accuracy
and unconditional stability; however, a tridiagonal matrix has to be solved within each time
step. Again, this is not desired in attempting to solve for the species densities, velocities,
and temperatures simultaneously in our detailed modeling.

Among all the numerical schemes designed for physical dissipative processes, the
alternating-direction explicit (ADE) scheme, developed by Barakat and Clark [6], has all of
the desired properties of a second-order local truncation error and unconditional stability.
To illustrate this simple and efficient scheme, we first look at the case when the dissipa-
tive coefficient,α, is a constant. LetVi andWi be the solutions of the following two-step
finite difference representations of Eq. (22). Then, the ADE scheme can be written as the
following two-step operation:

Vn+1
j = Vn

j + k

h

[
α

h

(
Vn

j +1 − Vn
j

) − α

h

(
Vn+1

j − Vn+1
j −1

)]
(23)

Wn+1
j = Wn

j + k

h

[
α

h

(
Wn+1

j +1 − Wn+1
j

) − α

h

(
Wn

j − Wn
j −1

)]
. (24)
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The final solution of Eq. (22) is simply the arithmetic average of Eqs. (23) and (24)

Un+1
j = (

Vn+1
j + Wn+1

j

)/
2. (25)

In the application of this method, Eq. (23) marches the solution from the left boundary to
the right boundary. While marching in this direction,Vn+1

j −1 is already known, consequently,

Vn+1
j can be determined explicitly. Likewise, Eq. (24) marches the solution from the right

boundary to the left boundary, resulting in an explicit solution sinceWn+1
j +1 is already known.

Since Eqs. (23) and (24) are not coupled, both can be solved simultaneously, resulting in
an efficient explicit scheme. Furthermore, in comparison with some first-order explicit
schemes and some second-order implicit schemes, discrete values ofUn+1

j had been tested
numerically to yield the lowest local truncation error [6].

To apply this numerical scheme to our ionospheric thermal plasma flow model, we need
to rewrite Eqs. (23) and (24) in conservation form and on a variably spaced grid. The
conservation form of these equations can be written as

Vn+1
j = Vn

j + k

h

[
αn

j +1/2Aj +1/2

Λ j

(
Vn

j +1 − Vn
j

) − αn+1
j −1/2Aj −1/2

Λ j

(
Vn+1

j − Vn+1
j −1

)]
(26)

Wn+1
j = Wn

j + k

h

[
αn+1

j +1/2Aj +1/2

Λ j

(
Wn+1

j +1 − Wn+1
j

) − αn
j −1/2Aj −1/2

Λ j

(
Wn

j − Wn
j −1

)]
, (27)

whereΛ j denotes the cell volume labeledj , andAj +1/2 denotes the interface area between
grid points j and j + 1. The superscript onα indicates a time dependence of the dissipative
coefficient. For the ionospheric thermal structure,α is not only a function of the species
densities, but also an exponentially increasing function of the species’ temperature too. The
thermal conductivities of the atomic ion and electron species are scaled asT5/2, resulting
in strong nonlinear heat conductions. Strictly speaking, a precise solution calls for many
iterations on Eqs. (26) and (27) within each time step. Because this is time-consuming, it
is not applicable for our detailed modeling of ionospheric thermal plasma flow.

A usual way to deal with nonlinear dissipation is to expand the thermal conduction
coefficientα in time, so that it can be truncated at any degree of approximation. In our
detailed modeling,α is simply linearized in time by replacing values at time leveln + 1
with values at leveln. The inaccuracy brought about by this method is of the same order
of magnitude that arises from time splitting. However, because the rate of change of the
species temperatures has a much larger time scale compared to the time step set for TV-
stability of the corresponding convective processes, our numerical tests have shown that
these inaccuracies do not grow using the time step set for convection.

Because the nonlinear dissipative coefficients given by Eqs. (26) and (27) are interface
values and because our viscous coefficients and heat conductivities are evaluated on grids
with a variable spacing along a magnetic flux tube, we need to find the interface values
by interpolation. To find the dissipative coefficients at the interface locations, the flux-
matching method given by Oran and Boris [16] has been used. The basic idea behind this
method is that the flux evaluated from the left-hand side of the interface should match the
one from the right-hand side; thus a flux-weighted dissipation coefficient,α j +1/2 can be
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determined as

α j +1/2 = α j α j +1(xj +1 − xj )

α j +1(xj +1/2 − xj ) + α j (xj +1 − xj +1/2)
, (28)

wherexj represents the arc-length of the magnetic flux tube at gridj measured from the
lower boundary of the northern ionosphere. Equation (28) ensures the fewest inconsistencies
in the fluxes at all interfaces while solving Eqs. (26) and (27).

So far, we have introduced the flux-corrected transport technique to handle the nonlinear
convection process and the alternating-direction explicit method for dissipative processes.
We also need to find a way to handle chemical reactions. In numerical simulations of
reactive flows, the time evolution of a conserved quantity resulting from chemical reactions
is normally treated as solutions of the ordinary differential equations of chemical kinetics.
Many possible interactions among different physical and chemical processes, as well as
ways of decoupling and solving chemically reacting processes, can be found in Oran and
Boris’s book [16]. Chemical reactions, particularly for inviscid flows with stiff sources,
yield more difficulties, regardless of the ways of coupling. In solving a scalar conservation
law with stiff chemical reacting sources, LeVeque and Yee [17] used a time-splitting method
and a predictor–corrector method of the MacCormack type and numerically compared the
solutions for the same reacting scalar conservation law. It was found that, although both
methods were second-order accurate in space and time, they gave incorrect propagation
speeds for discontinuities convected by an inviscid flow with stiff reacting sources. Under
normal situations, both methods can track discontinuities precisely as long as the reacting
sources are not too stiff. Since our model includes viscosity and heat conduction processes,
which always tend to smear shocks arising from nonlinear convection, the concern about
an accurate speed of shock propagation becomes irrelevant.

As was shown by Boriset al. [11], reacting sources and nonlinear convection processes
can be coupled through a time-splitting technique. Second-order accuracy can be achieved
by using a two-stage Runge-Kutta time integration for reacting sources. In the first stage,
provisional values are predicted through a forward-in-time integration for a half time step.
Then, based on these provisional values, a centered-in-time-and-space integration is imple-
mented in the second stage to find the results at the end of the whole time step. More details
can be found in [11].

Figure 1 shows the flowchart for the time marching process for a whole time step. At
the beginning, initial values are used to evaluate sources, upon which state variables are
forwarded in time by half a time step. Using these state variables as provisional values,
a convective transport process is implemented using the FCT technique, which advances
variables by half a time step (i.e., the leveln + 1/2). Based on these intermediate vari-
ables, subsequent time-centered integrations on sources, convection, and dissipation are
implemented successively, and thus variables are advanced in time by a whole step.

As a result of numerical tests, it turns out that, even though we do not evaluate viscosity
and heat conduction at the half time-step level, the variables do not change appreciably.
Because of that, we evaluate the dissipative processes only once within each whole time
step. This saves computer time and works well as long as the time step is appropriately
chosen so that strong heat fluxes imposed at the top boundary of the electron stream give
convergent temperature profiles; illustrations will be given in the next section.

To see a typical splitting procedure implemented in the coupled numerical scheme, we
pay particular attention to the numerical solution of Eq. (3), which includes all the processes
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FIG. 1. Flowchart of the FCT–ADE time marching scheme. The superscriptsn, n + 1/2, andn + 1 indicate
values at the beginning, the half time step, and the whole time step, respectively.

we are concerned with. This equation accounts for the rate of change of partial pressure
as a result of contributions from the different terms on the right-hand side. The first term
represents the contribution from convection, the second term is the thermal conduction, the
third term is customarily called the dissipation function, which represents the equivalent
heating rate arising from mechanical energy release due to viscous deformation, the fourth
term indicates the contribution from compression, and the last term includes all local heating
and cooling processes external to the system being concerned. The mathematical structure
of Eq. (3) can be concisely written as

ut = − f (u)x + [α(u)ux]x + 9(u). (29)

On the right-hand side of Eq. (29), the first term represents convection, the second term
represents conduction, and the third term represents the sum of all the other terms on the
right-hand side of Eq. (3) relating to the local heating and cooling processes. LetH be
the operator standing for an explicit two-level numerical stencil, then the time-splitting
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procedure given in Fig. 1 can be expressed as the following two stages:

Un+1/2 = Hk/2
f (Un)Hk/2

ψ (Un)Un (30)

Un+1 = Hk
d(U

n+1/2)Hk
f (U

n+1/2)Hk
ψ(Un+1/2)Un, (31)

where the subscriptsψ, f , andd represent local heating, convection, and dissipation, res-
pectively. Superscriptk represents the time step length and the dependence ofH on the
argumentU displays the nonlinear properties of these operators.

5. STEADY-STATE SOLUTIONS THROUGH THE TIME-DEPENDENT APPROACH

The ionospheric plasma is mainly composed of molecular (N+
2 , O+

2 , and NO+) and atomic
(O+ and H+) ions and electrons. Thermal plasma flows, however, are dominated by atomic
ions and electrons, which maintain quasineutrality. Each species (O+, H+, and e−) satisfies
the Navier–Stokes system given by Eqs. (1), (2), and (3). Under certain initial distributions
and appropriate boundary conditions, the Navier–Stokes systems can be solved by the
proposed FCT–ADE method. Solutions march forward in time from the initial distributions
giving both steady and time-dependent results for all the basic physical observables. Since
our thermal plasma flow model is coupled both to an empirical neutral atmospheric model
and to the nontransportive molecular ion photochemistry model, the steady-state solutions
are obtained via a time-dependent simulation with constant inputs.

Before running each case, the computational domain is established along the selected
magnetic flux tube, which starts at 42.6◦N, 288.5◦E at an altitude of 150 km, where the
lower boundary of the computational domain is located. The choice of flux tube location
is determined by the physics to be studied. At altitudes below 200 km, photochemical
equilibrium is dominant and convection across the lower boundary can be neglected. By
choosing the top boundary at 3000 km (33.8◦N, 290.6◦E) along the selected magnetic flux
tube, where transport processes are dominant, unique solutions can be found by specifying
density gradients, particle fluxes, and heat fluxes at that height. Since the Millstone Hill
incoherent scatter radar site is located below the lower boundary of the chosen flux tube, that
facilitates model-data comparisons and provides a way to judge the validity of our modeling
results. Based on the characteristic scale lengths of the parameters, a one-dimensional com-
putational domain is formed with a grid spacing that varies with altitude. The grid intervals,
however, are restricted to be much less than the characteristic scale lengths of the parameters.
Also, the increments between adjoining grid pairs are less than 1% of the grid spacing.

Owing to the complexities of the Navier–Stokes systems and the unknown initial condi-
tions, a steady-state solution is usually obtained first before exploring any time-dependent
behavior. The solutions, however, depend largely on the top boundary conditions, which
have to be well posed and physically consistent. In our simulations, due to the vast number of
protons uniformly stored in the plasmasphere, the H+ density gradient is negligibly small at
the upper boundary. For O+, since the ionosphere is the only source of O+ at high altitudes,
an extrapolation through inner grids works well for values at the top boundary interface. The
H+ particle flux at the top is chosen as an input parameter that is adjusted to the interhemi-
spheric flow conditions, supplying protons to the plasmasphere in the daytime and receiving
protons from the plasmaphere at night. As a minor ion, the O+ flux at 3000 km is simply
neglected and the boundary interface is treated as a rigid wall. This allows us to estimate the
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amount of O+ that resides in the upper part of the flux tube in the daytime and subsequently
flows down to the ionosphericF region at night. The electron density, determined by the
quasineutrality condition, is a summation over all the molecular and atomic ion densities.
The electron flux is determined by the no-current-flow condition. The electron stream has
two major heat sources. One is the solar extreme-ultraviolet (EUV) heating and the other is
the heat conducted down the flux tube from regions above the top boundary. This conducted
heat flux is an adjustable input parameter to the electron energy equation. The heat fluxes
of H+ and O+ across the top boundary are usually small and have been neglected. The den-
sities of the molecular ions are determined by local photochemical reactions, and a thermal
equilibrium is also assumed among all the molecular ion and neutral components. These
photochemical and thermal equilibrium processes are evaluated by iteration at a different
time step, usually much larger than the time step set by the CFL conditions.

Figures 2a, b, and c illustrate typical steady-state solutions of the species densities, velo-
cities, and temperatures. To approach these solutions, a constant downward H+ particle flux

FIG. 2. Noontime steady-state solutions of (a) species densities, (b) species velocities, and (c) species
temperatures.
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FIG. 3. Steady-state solutions of H+ (solid line), O+ (dashed line), and electron (dotted line) temperature
profiles using the FCT–FTCS method. No electron heat flux was imposed at the top boundary.

(4.5×107 cm−2 s−1) and a constant downward electron heat flux (−1.0×1010 eV cm−2 s−1)
where imposed at the top boundary; these are typical values. Note that the assumed initial
conditions do not affect the final steady-state solution. As shown by the velocity profiles, the
final steady plasma flows are basically subsonic, giving flow fields of a saturated flux tube
with constant H+ flux accross the top boundary, which is what is expected for a standard
mid-latitude flow pattern at 1200 local solar time (LST).

In our attempt to solve the Navier–Stokes systems, we first used the FCT technique to
solve the convection part and the FTCS scheme to solve the heat conduction part, and the
final results were found at the end of each time step through a time-splitting technique. To
avoid a stiff heat input, we simply omitted the heat flux that was previously imposed on the
electron gas at the “top boundary,” so that the local solar EUV heating at the low altitudes
(below 400 km) was the only heat source external to the systems. In this scenario, energy
transfer through conduction was comparable to convection at most altitudes. Shown in Fig. 3
is the steady-state solution for the species temperatures versus height obtained by using the
FCT-FTCS method. Numerical oscillations are clearly seen in the plot. These temperature
oscillations are caused by the FTCS scheme because its stability requires a much smaller
time step than the one determined by convection. The large heat conductivity of the electron
gas acts to reduce the time step considerably when this explicit scheme is used. Also, its
accuracy is restricted to be first-order in time. The reason why these oscillations do not
grow nonlinearly is that at each time step, soon after the oscillations are excited, the TVD
properties of the FCT scheme act to smooth the numerical oscillations. On the other hand,
the nonlinearly self-controlled antidiffusion tries to maintain these oscillations, which have a
relatively large wavelength. The numerical oscillations do not grow infinitely large because
we only consider a weak heat source. As a numerical test result, we found that any heat flux
imposed on the electron gas at the top boundary would cause a numerical instability when
the FCT-FTCS method was used.

In contrast, Fig. 4 shows the results of using the FCT–ADE method. Numerical osci-
llations are not present, even though the time step is the same. By comparing the two plots, the
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FIG. 4. Steady-state solutions of H+ (solid line), O+ (dashed line), and electron (dotted line) temperature
profiles using the FCT–ADE method. No electron heat flux was imposed at the top boundary.

species temperature profiles are almost the same, except for the oscillations in Fig. 3. A
comparison of the two methods suggests that the FTCS is applicable only through many
subcycling processes within the time step set for the TV-stability of the corresponding
nondissipative systems. Hence, it seems that an unacceptable subcycling is needed when
a heat flux is imposed on the electron gas at the top boundary. However, all the problems
encountered by the FCT-FTCS method are removed by the FCT–ADE method, which can
cope with a strong heat conduction without a reduction in the time step.

Viscosity plays an important role in solving the coupled systems even though it is usu-
ally weak and often negligible in ionospheric modeling. To see effects of viscosity, we
considered three different cases, obtained by multiplying the viscous coefficient by 0, 1,
and 2, respectively. Figures 5a, b, and c show comparisons between inviscid flow (viscous
coefficient multiplied by 0) and viscous flow (viscous coefficient multiplied by 1), where
the thick lines represent viscous flow and the thin lines represent the inviscid flow, which is
also indicated by a prime on each physical quantity. The densities in Fig. 5a show that the
H+ density is not sensitive to the viscous effect, but the O+ density scale height is signifi-
cantly elevated due to viscosity. The velocities in Fig. 5b indicate that the oscillations in the
inviscid H+ flow field are completely removed and the downward H+ flow is significantly
enhanced. Also, the upward O+ flow is increased by the inclusion of viscosity. Although the
electron temperature structure does not change much due to viscosity, as shown in Fig. 5c,
the O+ temperature can differ by about 100 K due to the direct result of viscous heating. The
H+ temperature profiles show less difference than the O+ profiles but a larger difference
than the electron profiles, which are not shown in the plot in order to present a clear view
of the comparison.

Figures 6a, b, and c show the comparisons of the viscous flows calculated with the viscous
coefficient multiplied by 1 and 2, respectively. Apparently, although the viscous coefficient
is amplified by a factor of 2, the height profiles of density, velocity, and temperature remain
unchanged. As a result of numerical testing, we conclude that viscosity has an effect on the
minor ion species, but it has a negligible effect on the major ions and electrons.
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FIG. 5. Comparisons of inviscid flows (thin lines labeled with primed quantities) and viscous flows (thick
lines) with coefficient multiplied by 1. Density, velocity, and temperature comparisons are shown in (a), (b), and
(c), respectively.

In addition to viscosity, another important process for ionospheric thermal plasma flows
is heat conduction, particularly for thermal electrons for which a downward heat flux is
normally imposed at the top boundary. For a typical electron heat flux input, the implemented
algorithm results in height profiles of plasma density, velocity, and temperature that converge
in time. In particular, starting from the same initial profiles and the same heat flux input, the
results are the same at any instance and converge to the same steady-state height profiles with
the same speed, regardless of the time step used in the calculation. Convergence tests can
fail, however, once the electron heat flux input exceeds a threshold of about 1011 eV/cm2/s.
Failure in the convergence reveals a numerical stiffness of the problem. In physics, such
a strong heat flux may correspond to an ill-posed problem, since it is rarely seen in the
mid-latitude ionosphere. Further discussions related to space physics will be presented
elsewhere.

Further numerical tests have demonstrated that by removing the viscosity and imposing
a strong electron heat flux at the top boundary, the H+ velocity and the electron temperature
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FIG. 6. Comparisons of viscous effects multiplied by 1 (thick lines) and 2 (thin lines labeled with double
primed quantities), respectively. The panels correspond to: (a) density comparison; (b) velocity comparison; and
(c) temperature comparison.

above about 1500 km show oscillations or wave propagation toward the top boundary,
although the species’ density profiles have no perceivable change. The wave behavior can
become much more obvious if we allow O+ to flow freely out of its top boundary. The
periodic shock propagation seen in the O+ gas may cause periodic oscillations of the electron
density, which, is turn, may result in oscillations of the electron temperature. These waves are
a result of the inviscid flow assumption, and they can be effectively removed by considering
viscosity. Nevertheless, periodic waves in the inviscid flow occur only when the electron heat
flux input approaches its threshold; again, that is rarely seen in the mid-latitude ionosphere.

6. TIME-DEPENDENT SOLUTIONS

Except around local noon, ionospheric plasma flows are mostly unsteady, particularly
at sunrise and sunset when geophysical conditions change drastically in time. Therefore, a
detailed modeling of the physics calls for a time-dependent simulation.
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Exploring the time-dependent solutions for a particular day normally begins with some
initial steady-state solutions, and then it proceeds in time until solutions are repeatable in a
diurnal sense. Furthermore, one way to validate the time-dependent model results obtained
with the FCT–ADE method is to compare with results from another model that is based on
different algorithms. Since the USU time-dependent ionospheric model (TDIM) provides
height distributions of plasma densities and temperatures, mainly O+, O+

2 , N+
2 , NO+, and

electrons, it is convenient to compare our results with this model. Since numerical model
results rely on the basic assumptions made in developing the model, it is worthwhile to
have a clear view of major differences between our model and the USU–TDIM model: (1)
The TDIM model was designed for the ionosphericE and F regions, which range from
100 km to 800 km, where O+ is treated as the major atomic ion participating in transport.
In contrast, the FCT–ADE model is valid for the above and, as previously mentioned, the
computational domain is from 150 km to 3000 km. Here, both O+ and H+ are considered as
major atomic ion species participating in transport. (2) In the TDIM, a diffusion formulation
is used for the ion transport process, which limits the formulation to subsonic flows. With the
FCT–ADE model, the complete continuity and momentum equations are solved, including
the inertia terms. (3) The TDIM solves the systems along a dipolar magnetic flux tube
using the implicit Crank–Nicolson scheme, while the FCT–ADE model solves the systems
along the real magnetic flux tube using an explicit nonlinear algorithm. Despite the above
differences, the TDIM is a valid model for the ionosphericF region, since photochemical
reactions and O+ diffusion are the major processes in this region. Also, the TDIM is a much
faster model than the current model, owing to the above assumptions. Model comparisons
are implemented between 150 km and 800 km, where the O+ reactive and diffusive processes
are dominant.

For the same geophysical inputs, comparisons of corresponding electron density and
temperature profiles are illustrated in Figs. 7 and 8, respectively. In these plots, solid lines
represent FCT–ADE model results, while dashed lines represent the USU–TDIM model
results. It is obvious that the corresponding density and temperature profiles have very sim-
ilar shapes, particularly at night, where the profiles tend to overlap. The largest difference is
found at sunrise, when the external inputs change drastically in time. During the daytime,
differences exist but they do not grow with time and diminish after sunset. These daytime
differences are partly caused by the fact that different space and time steps were used in the
two models and partly because of model differences. In particular, the FCT–ADE model
includes H+ and slightly different electron energy transfer processes. At any rate, the dif-
ferences between the two models are not important physically because the input parameters
needed by the ionospheric models (neutral densities, temperatures, winds; collision cross
sections; chemical reaction rates; etc.) have a large uncertainty and the two models agree
within this uncertainty.

Further differences in the density profiles are also noticed below about 200 km. They are
partly caused by the routines solving for the molecular ion transport. In the TDIM model,
the molecular ion species are both reactive and diffusive, while in the FCT–ADE model, the
diffusive effect is neglected and photochemical equilibrium for molecular ions is assumed.
However, the difference in the molecular ion densities calculated by the flow models is also
partly due to the difference in the calculated electron temperatures at low altitudes. The
electron temperature affects the molecular ion recombination rates, which then affect the
molecular ion densities. Again, this difference between the two models is not important
physically because of the uncertainties associated with the input parameters.



    

398 ZHOU, WICKWAR, AND SCHUNK

FIG. 7. Comparison of time-dependent electron density profiles. Solid lines represent FCT–ADE model results
and dashed lines represent USU–TDIM model results.
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FIG. 8. Comparison of time-dependent electron temperature profiles. Solid lines represent detailed FCT–ADE
model results and dashed lines represent USU–TDIM model results.
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Besides a comparison with another model, our results have also been compared with the
ionospheric incoherent scatter radar data given by Wickwaret al. [18]. As an important
application of the FCT–ADE model, the so-called anomalousF region density maximum
has been explained. This is another illustration of the model validity. Further details can be
found in the referred paper, which is in preparation.

7. CONCLUSIONS

We have introduced the local variation concept to understand the flux-limiter in the
flux-corrected transport technique. We have also coupled this technique with the alternating-
direction explicit method in a time-splitting fashion to solve the multiple systems of Navier–
Stokes equations with weak viscosity and strong heat conduction. Numerical tests have
been conducted for both steady-state and time-dependent situations. Viscous effects and
heat transfer were examined through convergence tests, while the time dependence of state
variables was studied through a model comparison. The fully coupled FCT–ADE numerical
techniques give simultaneous solutions of the complicated systems, and the results are
consistent with solutions obtained from a completely different method. The combined
FCT and ADE methods give a new approach to chemically reactive flows with variable
dissipation processes and, hence, are applicable to many fields of science and engineering,
such as aerodynamics and combustion simulations.

The time step set for the stability of convection and reaction processes also guarantees
stability and convergence of the dissipation processes under normal conditions. Although
the total variation is always guaranteed by the inclusion of physical dissipation processes,
the stability could collapse with stiff heat conduction. However, this numerical stiffness is
irrelevant in the real physical world. The explicit FCT and ADE methods were applied to an
inviscid flow, a strong dissipative flow, and a combined reactive, convective, and dissipative
flow with physically understandable results.

The elapsed CPU time on a Dec Alpha 2000/300 is approximately 14 h to simulate 24 h
of physical time, using our standard time step increment of 50 ms.

Our further work is to apply the FCT-ADE model to both low-latitude and high-latitude
thermal plasma transport problems, so that the validity of the model results can be tested by
comparing with more accurate measurements. The role of the FCT technique may become
particularly important when we model the high-latitude thermal plasma transport, where
the flows are often supersonic. Further concern is to look into a way of utilizing part or all
of the numerical dissipations introduced in the FCT technique to replace part of the desired
physical dissipations. This may lead to a capability of the FCT technique to handle both
Eulerian and Navier–Stokes systems as a whole.
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