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The flux-corrected transport (FCT) technique and the alternating-direction explicit
(ADE) method are coupled through a time-splitting technique. This new combination
of both methods has been used successfully to solve the fully coupled Navier—Stokes
system applied to ionospheric thermal plasma flows with a viscosity and strong heat
conduction. The combined scheme gives convergent solutions within the time step set
for nonlinear stability of the corresponding nondissipative flow fields, and the time-
dependent solutions are consistent with other model results using different methods.
To have a quantitative view of the flux-limiter of Boris’ FCT version, a concept of
local variation is defined to identify local extrema. The total variation diminishing
scheme finds unigue entropy solutions for vanishing dissipation. The ADE scheme,
however, enables us to handle dissipation when the FCT technique alone can be
inappropriate. © 1998 Academic Press

1. INTRODUCTION

The flux-corrected transport (FCT) technique, developed by Boris and Book [1], SO
nonlinear hyperbolic conservation laws with an explicitimplementation, a primitive variz
approach, a second-order accuracy in a smooth domain, and a high resolution in s
and contact discontinuities. Based on the merits of this scheme, it is widely used in s
physics research, particularly in modeling the earth’s ionospheric thermal plasma flov

In the upper atmosphere, solar extreme ultraviolet (EUV) radiation ionizes various
tral constituents, producing ion and electron pairs and forming the ionosphere. At low
tudes €150 km), the plasma concentrations are mainly determined by local photocher
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TABLE |
Dynamic Range of Plasma and Neutral Parameters at Mid-Latitudes

Parameter E Region F region peak Plasmasphere
lon species NO, Of, N o+ H*, He"
Neutral species NO, (0] H, He
ne(cm-3) 10710 100-10° 10°-10*
n,(cm=3) 5x 104 10° 10°
Te(K) 10%-10° 10° 10°-10*
Ti(K) 10>-1¢ 10 10°-5 x 10°
Ta(K) 10%-1¢ 5x 10°-1C° 5x 102-2 x 10°
Electron heat flux (eV cnf s™) 10°-10° 10°-10" 10°-101
Exchange flux (cm? s71) 0 —-100-10° —-100-10°
Plasma condition Weakly ionized Partially ionized Fully ionized

reactions, but as height increases, transport becomes dominant. Since the gyro-freque
of the charged particles are much larger than the interparticle collision frequencies, the
ferention and electron species are confined to flow along the geomagnetic field. The flov
plasma undergoes photochemical reactions, charge exchanges, particle interactions, a
as external heating and cooling processes. As a result of charge exchange and transpo
plasmasphere is formed, which extends to several earth radii along dipole-like geomagt
field lines. Despite the different names, the ionosphere and plasmasphere are esser
composed of plasma that originates in the earth’s upper atmosphere. Formulations rega
the basic physics, chemistry, and transport processes that are relevant to the ionosphel
plasmasphere are given, for example, by Schunk [2].

In general, characteristic distributions of the thermal plasma are functions of latitu
longitude, altitude, and solar zenith angle. To give some general concept about the pla
and neutral parameters at mid-latitudes, we list these in Table | for the ionosphvegoon
(100-150 km), the= region (150-1000 km), and the plasmasphere (above 1000 km alo
dipole field lines). The range of values is to account for hour-to-hour, season-to-season,
year-to-year variabilities.

During the last 20 years, there were several attempts at modeling the nonlinear trans
features of ionospheric plasma flows. In modeling the poststorm plasmaspheric refill
process, the FCT technique was used to solve the coupled continuity and momentum €
tions of the hyperbolic type [3]. Shock waves were found during the initial transient proce
of replenishing an empty magnetic flux tube. The FCT technique was also used to mc
supersonic thermal plasma flows, as in the polar wind [4]. However, these solutions w
based on inviscid flow assumptions and simplified energy conservation laws. Although
FCT technique can be conveniently applied to model some ionospheric reactive pla:
flows, it was, however, originally designed for solving hyperbolic systems. This limits i
direct application in modeling ionospheric plasma transport due to the existence of visco
and nonlinear heat conduction, which are hard to handle with an explicit hyperbolic sol
Other high-resolution methods, like the Godunov method with an approximate Riems
solver, were also used in numerical simulations of thermal plasma flows in space phy
[5]. However, the Godunov method requires extra manipulations at each time step on ei
value problems, which is time consuming. In addition, this method was also designed
idealized hyperbolic systems.
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Since heat conduction is of particular importance in the ionosphere and plasmasp
it should be solved simultaneously with the other transport processes for time-deper
simulations. Under normal situations, viscous effects may not be important, but they
to increase with altitude and counteract discontinuities arising from nonlinear convect
Based on these considerations, we choose the Navier—Stokes systems derived from Sc
13-moment equations [2] as our mathematical model and seek methods to find simultar
solutions of mixed hyperbolic and parabolic types of continuity, momentum, and ene
equations. Since the FCT technique can handle nonlinear convection and reacting so
our interest is to extend its capability by coupling it to other methods so that dissipation
be included. In addition, considering the explicit nature of FCT, another explicit sche
is desirable. It turns out that the alternating-direction explicit (ADE) method developed
Barakat and Clark [6] is particularly convenient for our systems of equations.

We first introduce our systems of conservation laws. Then, we look into the FCT .
the ADE schemes. Next, we illustrate the way we couple the two schemes to solve sys
of the mixed type, and we also apply the numerical technique to a specific space ph:
problem. Finally, the results we obtain using an FCT-ADE technique are compared to tl
obtained with a widely used completely implicit method.

2. EQUATIONS

The Navier—Stokes equations for multispecies thermal plasma flows can be derive
truncating the 13-moment transport equations [2]. For plasma flow along a diverging n
netic flux tube, the truncated system of continuity, momentum, and energy equations
comes
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where the quantities are the atomic ion (e.g",ddd H") concentratiom, particle fluxnu,
and partial pressung overbars denote quantities multiplied Aythe cross-sectional area of
the flux tube. The bulk velocityis derived from the particle flux and the species temperatu
T can be obtained frorp = n« T, wherex is the Boltzmann constant. Subscripefers to

a partial derivative with respect to time and the subsorigfers to a partial derivative with
respect to space along the magnetic flux tube. In Eqx @)dg denote the ion production
rate and the loss frequency due to photochemical reactions and resonant charge excl
respectively. In Eq. (2)E refers to the polarization electric field, which can be derive
from the electron momentum equatiay(y) is the gravity at point, andp is the viscous
coefficient, which depends on the species density and temperature as well as the effi
collision frequency defined by Schunk [2]. The quantitigsand & are the momentum
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transfer collision frequency and the velocity-dependent correction factor, respectively. -
summation over the indeik is for all of the ion and neutral species except the one bein
simulated. In Eq. (3)). represents the heat conductivity, which is normally proportional t
the ion or electron temperature to the power (2 5The termsU /8t represents the rate of

energy transfer due to elastic collisions between the different charge and neutral spe
The quantitieQ andL refer to the local electron heating and cooling rates, respectively

The electron density can be determined from the quasi-neutrality conditien) ", ni
where subscript e indicates the electron spedies, 1,2, 3, 4,5 indicate H, O™, N,
07, and NO, respectively. Likewise, the electron bulk velocity can be determined by t
ambipolar flow condition ase = (1/ne) >, NkUk. IN EQ. (2), E represents the polariza-
tion electric field between ion and electron speckes; —(1/e No) (dpe/9X) Which can be
derived from the electron momentum equation by dropping all the inertial terms.

Equations (1) through (3) are Navier—Stokes equations. Equation (1) is the conservea
law for the plasma species concentrations with allowance for sources. Equation (2)
momentum conservation law, which includes a viscous term that is normally weaker tl
the convection term in the domain of smooth solutions. The plasma temperature car
found by solving Eq. (3) for the partial pressure, but the nonlinear heat conduction te
has to be included, in addition to the convection term and the various heating and coo
processes.

If the equations are dominated by dissipative processes over convective transport,
can find methods other than FCT to solve them. Some implicit schemes work well
solving systems of the parabolic type. In ionospheric thermal plasma flows, viscosity
often weak, in comparison with other terms in the momentum conservation law, and «
can attempt to neglect it and solve the momentum equation by the FCT technique al
In contrast, the energy equations, particularly the electron equation, are dominated by
conduction, which the FCT technique cannot handle well. Implicit algorithms work well fc
heat conduction, but they require solving a block-tridiagonalized matrix at each time s
if one wants to solve the system simultaneously. Most implicit schemes work well wh
the domain of dependence is large [7, 8], but numerical smearing is inevitable when
flow becomes inviscid. Considering all of these issues, we looked for a method that wc
well for both nondissipative and strongly dissipative systems, and the coupled FCT-A
method appears to be the most appropriate.

3. THE FLUX-CORRECTED TRANSPORT TECHNIQUE

Considering a convected quantityx, t) with spatial variablex and temporal variablg
its simplest evolution is guided by a scalar conservation law of the form

ur + f(u)y =0, 4)

where f (u) is the flux function ofu.
The two-level explicit difference scheme applicable to Eq. (4) can be written as

Ut = Up - KIF s ) - FUns - 1), ®

whereU is normally the cell averaged value wfh is the grid spacingk is the time step,
andF is the numerical flux function of two or more adjoining grid ddtawhich is a natural
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result of the finite domain of dependence of the convection process. To avoid conver
to a nonsolutionF is normally expressed in conservation form; theory and examples hi
been given by LeVeque [9] and references therein.

Due to the nonlinearity of Eq. (4), the convergence of Eq. (5) requires a consistent
conservative numerical method to be TV-stable; that is, the total variation of all the ¢
functions,U, defined oveiN discrete grids of the whole computational domain,

N
TV(U) =sup> _|Uj —Uj_4], (6)
j=1

is at any time uniformly bounded by the total variation of the initial data. To guarantee
a numerical method has all of the above properties, the total variation diminishing (T\
conceptis broadly used as a quantitative description for algorithms designed for a nonili
convection process. One importance of TVD is that a true solution to a scalar conserv:
law has this property; i.e., entropy solutions or vanishing viscosity solutions of Eq. (4) h
nonincreasing total variations. Another feature of TVD is that any TVD method has
mathematical property of monotonicity preserving, which guarantees physical positi
in any convective transport process. This is very important for inviscid flow, where sc
second-order methods like Lax—Wendroff may fail in preserving monotonicity arising fr
numerical dispersion, particularly near discontinuities. Although these algorithms ar
second-order accuracy for scalar conservation laws, they are of third-order accurac
an appropriate dispersive equation, as was shown by the theory of modified equation
Hence, oscillations are inevitable when using these algorithms. Once oscillations o
total variations of the grid function also increase with time, and thus the algorithms are
TVD nor monotonicity preserving. As a result of numerical oscillations, a negative m
may occur, which violates physical positivity.

To evaluate the quality of an algorithm, anotherimportant criterion besides TVD conce
the spatial resolution, where at least second-order accuracy is needed on smooth sol
and discontinuities are accurately resolved. First-order approximations like the upv
method have been shown to satisfy the TVD and, hence, are monotonicity preserving
they introduce numerical diffusion into the grid function, which may grow particular
large near a discontinuity so that nonlinear waves like shocks or contact discontinuitie:
severely smeared. Hence, they are not a high-resolution method.

To obtain a method that satisfies TVD and has a high resolution, one can use a high-
scheme for smooth solutions and a low-order scheme to increase the amount of num
dissipation in the neighborhood of discontinuities to prevent numerical dispersion. A |
sible approach is to introduce some artificial viscosity into a known high-order numer
scheme, say, the Lax-Wendroff scheme, and then the numerical scheme will have the

k(h h
1 2

h h ,
_ﬂej,%(uﬁuj",l) — [ﬂej% +hQ} (U}‘—U}‘l)}. @)
In Eq. (7), ;412 = kfu(u)/h represents the courant number, which never exceed:s
in any explicit algorithm due to the finite characteristic speedf@fl). The last term
represents the artificial viscosity added to the scheme, which will vanish kéygporoaches
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zero. Although for constan® Eq. (7) remains second-order accurate, it is not TVD no
monotonicity preserving, as was stated in Godunov’s theorem; any linear, monotoni
preserving method should be at most first-order accurate. Therefore, the properties of
and high resolution seem to be mutually exclusive for linear methods. For the nonlin
artificial viscosity approach, however, it is not obvious how to determine the nonline
viscosity coefficientQ(U; j) so that it introduces just enough dissipation to satisfy TVC
without causing unnecessary smearing.

To circumvent this dilemma, many nonlinear algorithms were invented. These algorith
are intuitive and usually there is a close connection between methods developed by ¢
different means. The two categories of flux-limiter and slope-limiter methods [9] are go
examples of these and possess features of both TVD and high resolution. We present
the flux-limiter method developed by Bows al.[12] in the following notes.

Any high-order numerical flux functiorky, can be viewed as consisting of the low-order
flux, F_, plus a correction as

FuU; j) = FL(U; ) +[FaU; j) — FL(Us )] ®)

In the flux-limiter method, a flux limiting process is applied to the flux difference in Eq. (€
so that it can be written as

FU; ) =FWU; )+ 2U, VU; DIFaU; J) — FLU; )] ©)

where ®(U, VU; j) represents the flux-limiter, which functionally depends on the gri
function U and its spatial gradient. i approaches 1, Eq. (9) represents a high-orde
flux function applicable wherevéi shows smooth distributions over some computatione
domain. On the other hand, # approaches 0, then the flux function (9) degrades to
low-order numerical flux, which may be used in the vicinity of a discontinuity to maintai
TVD. For @ between 0 and 1 exclusively, Eq. (9) remains first-order accurate.

In the version of Boris and others [11], the low-order flux function can be expressed &
combination of the upwind flux and the Lax—Wendroff flux, where the upwind flux can I
written as

1 1
FUW(anv an+1) = 5)“1+1/2(an + an+1) - §|)‘J+1/2|<Uin+l - UJn) (10)

and whererj 1> represents the characteristic speed evaluated at the interface betw
grids j andj + 1. Equation (10) is more diffusive than the Lax—Wendroff flux, which cat
be written as

1 k
Fuw (U, Ulla) = SAi4a/2(U] + Ufl) = 502f2(Ufh = Uf). (1)

The low-order flux-function chosen by Bowrs al.[11] can be written as

1
FLUDL Ulk) = Shsa2(Uf + UL = yisa2(Uk - Uf), (12)

wherey; 1/, represents the numerical diffusion coefficient, which varies bet\ééqal/ﬂ
andz—‘;)”ﬂl/z, sothat Eq. (12) gives afirst-order numerical flux that s less diffusive than (1
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and less dispersive than (11). The practical choice of the numerical diffusion coeffic
Yi+1/2 given by Boris and Book [12] was

h/1 1
Vit12 = <5 + 5812+1/z>~ (13)

This choice brings just a sufficient amount of numerical diffusion into the computatio
domain so as to prevent unphysical oscillations, to ensure physical positivity near a <
change of the grid function, and to maintain TVD. Nevertheless, the extra numerical
fusion resulting from this low-order numerical flux function can deteriorate solutions
domains of a smooth grid function. To remove extra numerical diffusion and keep sect
order accuracy on a smooth domain, a flux-limiting or flux-correcting process is follow
Using the Lax—Wendroff flux function (11) &% and subtractind-_ given in (12) results
in a numerical flux function of the form

FuU; j) = FL 4+ pjpa2(U), — U7, (14)

where the term added tg represents the antidiffusion defined by Bagtsal. [11], with
the antidiffusive coefficient chosen as

h/t 1,
MJH'/ZZE 6_68j+1/2 : (15)

With use of (13) and (15), Eq. (14) reproduces the Lax—Wendroff numerical flux functi
In other words, the antidiffusive coefficient (15) gives the maximum antidiffusion possi
without violating TVD on a smooth domain. At a discontinuity, however, it requires
correction; otherwise the antidiffusive flux chosen above tends to create or accentuate
extrema. Thus, a flux-limiter, or flux-corrector, is introduced to replace the antidiffus
flux in (14), which prevents unphysical oscillations at the vicinity of a discontinuity. T
flux-limiter given by Boriset al.[11] can be written as

h L L
S (U] —ujl]}

(16)

. [_.h
ijJrl/z =S. maX{O, min |:SE (UjL+2 — UJ‘L+1> ’

wiy2(Ufg —Uf)

with S= sign(Uj+1 —U; ) superscript refers to intermediate values calculated with th
low-order flux (12), which reduces the residual diffusion even further [11]. Equation (:
was designed to filter local maxima or minima and to prevent large antidiffusion whe
sudden change in the grid function occurs between dgriaisd j + 1.

To have a more intuitive and quantitative view of Eq. (16), we introduce here an absc
local variation function LV, as opposed to a total variation function, as

o1 -
Lv (U; i+ E) = Z Ujtk+1 — Ujkl (17)

k=—m

which samples a particular segment of the total variation between grid poiata to
j +m+ 1, with the length depending on thevalue. The first quantitative sense of Eq. (17
is its capability of identifying local extrema when referred to a monotone data profile
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is easy to see that any monotone change bounded by the two end data jpeimtsand

j + m+1, has the same value of absolute local variation, above which are contribution:
local extrema. Henceforth, any local maxima or minima can be identified by the differer
between the absolute local variation defined in (17) and the absolute local variation of
two end data points—mandj +m+ 1. Thus, we have the following relative local variation
concept, or simply the local variation,

o1 "
£V<U§ )+ E) = Z Ujtk+1 — Ujskl = Ujimea — Ujoml (18)

k=—m

which describes the relative deviation of the grid function from a monotone change boun
by the two end data points. Obviously, any local maxima or minima can lead to the va
of LV greater than 0, while a monotone change always m&Rkevanishing. The local
variation function we have introduced is defined at the interface betweer @eitsj + 1.

By choosing four neighboring grid points around the interface, we can identify all tt
extrema as Eq. (16) does. As long&® is greater than 0, we add in all the antidiffusion,
which acts to eliminate local extrema the same way that Eq. (16) does, and hence, a -
scheme is maintained.

Local variation can single out local extrema, but cannot distinguish shocks or cont
discontinuities from smooth variations because both are monotong€¥n@nishes. The
identification of a shock or contact discontinuity from other monotone profiles is usua
done by comparing the spatial gradients at adjoining data pairs. If a gradient at the inter
is much larger than values at the two neighboring interfaces, the antidiffusion is held at
smallest value of the gradient to maintain a certain amount of numerical diffusion in t
flux function to prevent oscillations. Denoted %ythe difference between two neighboring
points, or the absolute local variation of the adjoining data pair, Eq. (16) can be expres
as

F1p(Usj)=0 if £V >0 (19)

FJ.CH/ZEmin[yvujL+3/2\h/k, vujLH/zyMH/z, vujL_l/z\h/k} if £V =0. (20)

The final numerical flux, including the limiter in Boris’s version, can be written as
FU™ ) =FLU™ )+ Ffy, (21)

For £V >0, Eq. (21) represents a low-order flux-function (upwind) given by (12); fo
LYV =0, Eq. (21) represents a high-order flux-function (Lax—Wendroff) given by (11). Tt
FCT version given by Boris is implemented by substituting (21) into (5). Its TVD and hig
resolution qualities are established through the above analysis.

Although limiter (19) filters local extrema, it also eliminates real physical extrema.
addition, determining a discontinuity by Eq. (20) relies subjectively on intuition. As
matter of fact, the clipping effect at physical extrema and the errosive effect at neighbors
discontinuity become new problems, as shown by passive convection tests in [11]. Altho
the flux-limiter was improved by Zalesak [13] and Kunhaedtal. [14], particularly in
preserving local physical extrema, there are still hard problems to be solved. When apy
to ionospheric thermal plasma flows, however, the inaccuracy caused by a flux-limite
not important due to the existence of physical dissipation. The above notes were prese
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to help explain the flux-corrected transport technique developed by Boris, so that it
be used appropiately. Although the proposed local variation may be useful in explorir
more precise flux-limiter, a further investigation of inviscid algorithms is not in the curre
research.

4. THE FCT-ADE METHODS

As mentioned above, the flux-corrected transport technique can be applied to solv
nonlinear convection process efficiently. However, a problem arises when we apply
technique to solve the Navier—Stokes system of Eqgs. (1), (2), and (3) with dissipation te
included. Unlike convection, mathematically, viscosity and heat conduction are represe
by second-order spatial derivative terms; computationally, they have an infinite domai
dependence; and physically, they transport momentum and energy through thermal
tion guided by statistical mechanics. Although particle diffusion is not explicitly shown
Egs. (1), (2), and (3), it can be evaluated when the convective velocity is sufficiently sn
All dissipative processes have a similar mathematical formulation. If we separate tl
processes from convection and local chemical reactions, then a typical dissipation pre
can be written as

Ur = [a(U)uy]y, (22)

where the dissipative coefficiert(u), is normally a function of the dependent variable
In contrast to the numerical dissipation brought about by a low-order convection sche
the physical dissipation does not vanish as the grid is successively refined.

To solve Eq. (22), an explicit scheme, forward in time and centered in space (FTCS),
adopted and incorporated with the FCT technique to model the two-dimensional flame
cess by Patnaikt al.[15]. The detailed model subcycles the viscosity and heat conduct
processes within the time step set up for stability of the nonlinear convection proces
The advantages of this explicit scheme are the ease of programming and computa
time saving, compared with an implicit scheme. Defects of this technique are its first-o
truncation error and stability limitations. An implicit scheme yields second-order accur
and unconditional stability; however, a tridiagonal matrix has to be solved within each t
step. Again, this is not desired in attempting to solve for the species densities, veloci
and temperatures simultaneously in our detailed modeling.

Among all the numerical schemes designed for physical dissipative processes
alternating-direction explicit (ADE) scheme, developed by Barakat and Clark [6], has al
the desired properties of a second-order local truncation error and unconditional stak
To illustrate this simple and efficient scheme, we first look at the case when the diss
tive coefficient,x, is a constant. Le¥; andW, be the solutions of the following two-step
finite difference representations of Eq. (22). Then, the ADE scheme can be written a:
following two-step operation:

kK[a o
VIt =Vt { p (V= V) = (v - an+11)} (23)

k
wrt = wp 4 K [% (Wit - weet) — % wp wjn_l)} . (24)
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The final solution of Eq. (22) is simply the arithmetic average of Egs. (23) and (24)
anJrl — (an+1 + an+1> /2 (25)

In the application of this method, Eq. (23) marches the solution from the left boundary
the right boundary. While marching in this directic):‘]”jl1 is already known, consequently,
Vjn+1 can be determined explicitly. Likewise, Eg. (24) marches the solution from the rig
boundary to the left boundary, resulting in an explicit solution sw§¢11 is already known.
Since Eqgs. (23) and (24) are not coupled, both can be solved simultaneously, resultir
an efficient explicit scheme. Furthermore, in comparison with some first-order expli
schemes and some second-order implicit schemes, discrete valuP‘éldfad been tested
numerically to yield the lowest local truncation error [6].

To apply this numerical scheme to our ionospheric thermal plasma flow model, we ne
to rewrite Egs. (23) and (24) in conservation form and on a variably spaced grid. T
conservation form of these equations can be written as

kol 4 ,Ai11 oM OA
1 j+1/27\+1/2 j—1/27\-1/2 1 1
an+ - VJn + H A‘ (an+l - V]n) - A— (an+ - anj—l) (26)
i i
Wn+1 _ Wn k a?IZ:II:/ZAI"Fl/Z Wn+1 Wn+1 d?71/2A1_1/2 Wn Wn 27
[ j+ﬁ Aj ( j+1 — VY )_ A ( i j—l)’ (27)

whereA; denotes the cell volume labelgdandA; 1/, denotes the interface area betweer
grid pointsj andj + 1. The superscript om indicates a time dependence of the dissipative
coefficient. For the ionospheric thermal structuras not only a function of the species
densities, but also an exponentially increasing function of the species’ temperature too.
thermal conductivities of the atomic ion and electron species are scaled?asesulting

in strong nonlinear heat conductions. Strictly speaking, a precise solution calls for m:
iterations on Eqgs. (26) and (27) within each time step. Because this is time-consumin
is not applicable for our detailed modeling of ionospheric thermal plasma flow.

A usual way to deal with nonlinear dissipation is to expand the thermal conducti
coefficiente in time, so that it can be truncated at any degree of approximation. In o
detailed modelinge is simply linearized in time by replacing values at time lenet 1
with values at leveh. The inaccuracy brought about by this method is of the same ord
of magnitude that arises from time splitting. However, because the rate of change of
species temperatures has a much larger time scale compared to the time step set fo
stability of the corresponding convective processes, our numerical tests have shown
these inaccuracies do not grow using the time step set for convection.

Because the nonlinear dissipative coefficients given by Egs. (26) and (27) are inter
values and because our viscous coefficients and heat conductivities are evaluated on
with a variable spacing along a magnetic flux tube, we need to find the interface vall
by interpolation. To find the dissipative coefficients at the interface locations, the flL
matching method given by Oran and Boris [16] has been used. The basic idea behind
method is that the flux evaluated from the left-hand side of the interface should match
one from the right-hand side; thus a flux-weighted dissipation coeffiaigni,» can be
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determined as

ojaj1(Xj+1 — X))
ajr1(Xjr12 — X)) + o (Xj41 — Xj11/2)

Aj+1/2 = (28)
wherex; represents the arc-length of the magnetic flux tube at griteasured from the
lower boundary of the northern ionosphere. Equation (28) ensures the fewestinconsiste
in the fluxes at all interfaces while solving Egs. (26) and (27).

So far, we have introduced the flux-corrected transport technique to handle the nonl
convection process and the alternating-direction explicit method for dissipative proce:
We also need to find a way to handle chemical reactions. In numerical simulation
reactive flows, the time evolution of a conserved quantity resulting from chemical reacti
is normally treated as solutions of the ordinary differential equations of chemical kinet
Many possible interactions among different physical and chemical processes, as w
ways of decoupling and solving chemically reacting processes, can be found in Orar
Boris’s book [16]. Chemical reactions, particularly for inviscid flows with stiff source
yield more difficulties, regardless of the ways of coupling. In solving a scalar conserva
law with stiff chemical reacting sources, LeVeque and Yee [17] used a time-splitting met
and a predictor—corrector method of the MacCormack type and numerically comparec
solutions for the same reacting scalar conservation law. It was found that, although
methods were second-order accurate in space and time, they gave incorrect propa
speeds for discontinuities convected by an inviscid flow with stiff reacting sources. Ur
normal situations, both methods can track discontinuities precisely as long as the rea
sources are not too stiff. Since our model includes viscosity and heat conduction proce
which always tend to smear shocks arising from nonlinear convection, the concern a
an accurate speed of shock propagation becomes irrelevant.

As was shown by Borist al.[11], reacting sources and nonlinear convection process
can be coupled through a time-splitting technique. Second-order accuracy can be ach
by using a two-stage Runge-Kutta time integration for reacting sources. In the first st
provisional values are predicted through a forward-in-time integration for a half time st
Then, based on these provisional values, a centered-in-time-and-space integration is i
mented in the second stage to find the results at the end of the whole time step. More d
can be found in [11].

Figure 1 shows the flowchart for the time marching process for a whole time step
the beginning, initial values are used to evaluate sources, upon which state variable
forwarded in time by half a time step. Using these state variables as provisional val
a convective transport process is implemented using the FCT technique, which adve
variables by half a time step (i.e., the level 1/2). Based on these intermediate vari
ables, subsequent time-centered integrations on sources, convection, and dissipati
implemented successively, and thus variables are advanced in time by a whole step.

As a result of numerical tests, it turns out that, even though we do not evaluate visce
and heat conduction at the half time-step level, the variables do not change appreci
Because of that, we evaluate the dissipative processes only once within each whole
step. This saves computer time and works well as long as the time step is appropri
chosen so that strong heat fluxes imposed at the top boundary of the electron strean
convergent temperature profiles; illustrations will be given in the next section.

To see a typical splitting procedure implemented in the coupled numerical scheme
pay particular attention to the numerical solution of Eq. (3), which includes all the proces
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we are concerned with. This equation accounts for the rate of change of partial pres:
as a result of contributions from the different terms on the right-hand side. The first te
represents the contribution from convection, the second term is the thermal conduction
third term is customarily called the dissipation function, which represents the equival
heating rate arising from mechanical energy release due to viscous deformation, the fc
term indicates the contribution from compression, and the lastterm includes all local hea
and cooling processes external to the system being concerned. The mathematical stru
of Eg. (3) can be concisely written as

Uy = — F(Wx + [auy]x + Y (). (29)

On the right-hand side of Eq. (29), the first term represents convection, the second t
represents conduction, and the third term represents the sum of all the other terms ol
right-hand side of Eq. (3) relating to the local heating and cooling processe${ lbet

the operator standing for an explicit two-level numerical stencil, then the time-splittir
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procedure given in Fig. 1 can be expressed as the following two stages:
Un+1/2 — ’Hﬁ/z(U”)’H;/Z(U n)Un (30)
Un+1 — Hlé (U n+l/2)HI? (U n+1/2)Hll<# (U n+1/2)Un7 (31)

where the subscriptg, f, andd represent local heating, convection, and dissipation, re
pectively. Superscript represents the time step length and the dependenté af the
argument displays the nonlinear properties of these operators.

5. STEADY-STATE SOLUTIONS THROUGH THE TIME-DEPENDENT APPROACH

The ionospheric plasma is mainly composed of moleculgr @ , and NO") and atomic
(O* and H") ions and electrons. Thermal plasma flows, however, are dominated by atc
ions and electrons, which maintain quasineutrality. Each speciesHQ and €) satisfies
the Navier—Stokes system given by Egs. (1), (2), and (3). Under certain initial distributi
and appropriate boundary conditions, the Navier—Stokes systems can be solved b
proposed FCT-ADE method. Solutions march forward in time from the initial distributio
giving both steady and time-dependent results for all the basic physical observables. !
our thermal plasma flow model is coupled both to an empirical neutral atmospheric m
and to the nontransportive molecular ion photochemistry model, the steady-state solu
are obtained via a time-dependent simulation with constant inputs.

Before running each case, the computational domain is established along the sel
magnetic flux tube, which starts at 42§ 288.5E at an altitude of 150 km, where the
lower boundary of the computational domain is located. The choice of flux tube local
is determined by the physics to be studied. At altitudes below 200 km, photochernr
equilibrium is dominant and convection across the lower boundary can be neglectec
choosing the top boundary at 3000 km (3BI8290.6E) along the selected magnetic flux
tube, where transport processes are dominant, unique solutions can be found by spec
density gradients, particle fluxes, and heat fluxes at that height. Since the Millstone
incoherent scatter radar site is located below the lower boundary of the chosen flux tube
facilitates model-data comparisons and provides a way to judge the validity of our mode
results. Based on the characteristic scale lengths of the parameters, a one-dimensiona
putational domain is formed with a grid spacing that varies with altitude. The grid interv:
however, are restricted to be much less than the characteristic scale lengths of the paran
Also, the increments between adjoining grid pairs are less than 1% of the grid spacing

Owing to the complexities of the Navier—Stokes systems and the unknown initial col
tions, a steady-state solution is usually obtained first before exploring any time-deper
behavior. The solutions, however, depend largely on the top boundary conditions, w
have to be well posed and physically consistent. In our simulations, due to the vast numt
protons uniformly stored in the plasmasphere, tHeddnsity gradient is negligibly small at
the upper boundary. ForQsince the ionosphere is the only source &f& high altitudes,
an extrapolation through inner grids works well for values at the top boundary interface.
H* particle flux at the top is chosen as an input parameter that is adjusted to the interh
spheric flow conditions, supplying protons to the plasmasphere in the daytime and rece
protons from the plasmaphere at night. As a minor ion, thefldx at 3000 km is simply
neglected and the boundary interface is treated as a rigid wall. This allows us to estimat
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amount of O that resides in the upper part of the flux tube in the daytime and subsequel
flows down to the ionospheriE region at night. The electron density, determined by the
quasineutrality condition, is a summation over all the molecular and atomic ion densiti
The electron flux is determined by the no-current-flow condition. The electron stream |
two major heat sources. One is the solar extreme-ultraviolet (EUV) heating and the othe
the heat conducted down the flux tube from regions above the top boundary. This condu
heat flux is an adjustable input parameter to the electron energy equation. The heat fl
of HT and O across the top boundary are usually small and have been neglected. The
sities of the molecular ions are determined by local photochemical reactions, and a thel
equilibrium is also assumed among all the molecular ion and neutral components. Tt
photochemical and thermal equilibrium processes are evaluated by iteration at a diffe
time step, usually much larger than the time step set by the CFL conditions.

Figures 2a, b, and c illustrate typical steady-state solutions of the species densities, \
cities, and temperatures. To approach these solutions, a constant downwzadikle flux
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FIG. 2. Noontime steady-state solutions of (a) species densities, (b) species velocities, and (c) spe
temperatures.
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(4.5x 10" cm~?s71) and a constant downward electron heat flug 0 x 10'°eV cnr2s71)
where imposed at the top boundary; these are typical values. Note that the assumed
conditions do not affect the final steady-state solution. As shown by the velocity profiles,
final steady plasma flows are basically subsonic, giving flow fields of a saturated flux t
with constant H flux accross the top boundary, which is what is expected for a stand
mid-latitude flow pattern at 1200 local solar time (LST).

In our attempt to solve the Navier—Stokes systems, we first used the FCT techniqt
solve the convection part and the FTCS scheme to solve the heat conduction part, ar
final results were found at the end of each time step through a time-splitting technique
avoid a stiff heat input, we simply omitted the heat flux that was previously imposed on
electron gas at the “top boundary,” so that the local solar EUV heating at the low altitu
(below 400 km) was the only heat source external to the systems. In this scenario, er
transfer through conduction was comparable to convection at most altitudes. ShowninF
is the steady-state solution for the species temperatures versus height obtained by usi
FCT-FTCS method. Numerical oscillations are clearly seen in the plot. These temper:
oscillations are caused by the FTCS scheme because its stability requires a much sr
time step than the one determined by convection. The large heat conductivity of the ele
gas acts to reduce the time step considerably when this explicit scheme is used. Als
accuracy is restricted to be first-order in time. The reason why these oscillations dc
grow nonlinearly is that at each time step, soon after the oscillations are excited, the
properties of the FCT scheme act to smooth the numerical oscillations. On the other f
the nonlinearly self-controlled antidiffusion tries to maintain these oscillations, which hay
relatively large wavelength. The numerical oscillations do not grow infinitely large beca
we only consider a weak heat source. As a numerical test result, we found that any hea
imposed on the electron gas at the top boundary would cause a numerical instability \
the FCT-FTCS method was used.

In contrast, Fig. 4 shows the results of using the FCT-ADE method. Numerical o
llations are not present, even though the time step isthe same. By comparing the two plot
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species temperature profiles are almost the same, except for the oscillations in Fig.
comparison of the two methods suggests that the FTCS is applicable only through m
subcycling processes within the time step set for the TV-stability of the correspond
nondissipative systems. Hence, it seems that an unacceptable subcycling is needed
a heat flux is imposed on the electron gas at the top boundary. However, all the probl
encountered by the FCT-FTCS method are removed by the FCT-ADE method, which
cope with a strong heat conduction without a reduction in the time step.

Viscosity plays an important role in solving the coupled systems even though it is u:
ally weak and often negligible in ionospheric modeling. To see effects of viscosity, \
considered three different cases, obtained by multiplying the viscous coefficient by 0
and 2, respectively. Figures 5a, b, and ¢ show comparisons between inviscid flow (visc
coefficient multiplied by 0) and viscous flow (viscous coefficient multiplied by 1), wher
the thick lines represent viscous flow and the thin lines represent the inviscid flow, whicl
also indicated by a prime on each physical quantity. The densities in Fig. 5a show that
H* density is not sensitive to the viscous effect, but thed@nsity scale height is signifi-
cantly elevated due to viscosity. The velocities in Fig. 5b indicate that the oscillations in
inviscid H* flow field are completely removed and the downward ftéw is significantly
enhanced. Also, the upward@ow is increased by the inclusion of viscosity. Although the
electron temperature structure does not change much due to viscosity, as shown in Fic
the O temperature can differ by about 100 K due to the direct result of viscous heating.
H* temperature profiles show less difference than thep@files but a larger difference
than the electron profiles, which are not shown in the plot in order to present a clear v
of the comparison.

Figures 6a, b, and c show the comparisons of the viscous flows calculated with the visc
coefficient multiplied by 1 and 2, respectively. Apparently, although the viscous coefficie
is amplified by a factor of 2, the height profiles of density, velocity, and temperature rem
unchanged. As a result of numerical testing, we conclude that viscosity has an effect or
minor ion species, but it has a negligible effect on the major ions and electrons.
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In addition to viscosity, another important process for ionospheric thermal plasma fls
is heat conduction, particularly for thermal electrons for which a downward heat fluy
normally imposed at the top boundary. For atypical electron heat flux input, the impleme
algorithmresults in height profiles of plasma density, velocity, and temperature that conv
in time. In particular, starting from the same initial profiles and the same heat flux input,
results are the same at any instance and converge to the same steady-state height profil
the same speed, regardless of the time step used in the calculation. Convergence te:
fail, however, once the electron heat flux input exceeds a threshold of adde\/enT/s.
Failure in the convergence reveals a numerical stiffness of the problem. In physics,
a strong heat flux may correspond to an ill-posed problem, since it is rarely seen in
mid-latitude ionosphere. Further discussions related to space physics will be prese
elsewhere.

Further numerical tests have demonstrated that by removing the viscosity and impc
a strong electron heat flux at the top boundary, the/Blocity and the electron temperature
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above about 1500 km show oscillations or wave propagation toward the top bound
although the species’ density profiles have no perceivable change. The wave behavio
become much more obvious if we allowrQo flow freely out of its top boundary. The

periodic shock propagation seen in the @as may cause periodic oscillations of the electror
density, which, isturn, may resultin oscillations of the electron temperature. These waves
a result of the inviscid flow assumption, and they can be effectively removed by consider
viscosity. Nevertheless, periodic waves in the inviscid flow occur only when the electron h
flux input approaches its threshold; again, that is rarely seen in the mid-latitude ionosph

6. TIME-DEPENDENT SOLUTIONS

Except around local noon, ionospheric plasma flows are mostly unsteady, particul:
at sunrise and sunset when geophysical conditions change drastically in time. Therefo
detailed modeling of the physics calls for a time-dependent simulation.
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Exploring the time-dependent solutions for a particular day normally begins with so
initial steady-state solutions, and then it proceeds in time until solutions are repeatable
diurnal sense. Furthermore, one way to validate the time-dependent model results obt
with the FCT-ADE method is to compare with results from another model that is base
different algorithms. Since the USU time-dependent ionospheric model (TDIM) provit
height distributions of plasma densities and temperatures, mainl¥o9, N3, NO*, and
electrons, it is convenient to compare our results with this model. Since numerical m
results rely on the basic assumptions made in developing the model, it is worthwhil
have a clear view of major differences between our model and the USU-TDIM model:
The TDIM model was designed for the ionosphetiand F regions, which range from
100 km to 800 km, where Ois treated as the major atomic ion participating in transpol
In contrast, the FCT-ADE model is valid for the above and, as previously mentioned,
computational domain is from 150 km to 3000 km. Here, bothe®d H" are considered as
major atomic ion species participating in transport. (2) In the TDIM, a diffusion formulati
is used for the ion transport process, which limits the formulation to subsonic flows. With
FCT-ADE model, the complete continuity and momentum equations are solved, inclu
the inertia terms. (3) The TDIM solves the systems along a dipolar magnetic flux t
using the implicit Crank—Nicolson scheme, while the FCT-ADE model solves the syst¢
along the real magnetic flux tube using an explicit nonlinear algorithm. Despite the ak
differences, the TDIM is a valid model for the ionosphdficegion, since photochemical
reactions and Odiffusion are the major processes in this region. Also, the TDIM is a mui
faster model than the current model, owing to the above assumptions. Model compari
are implemented between 150 km and 800 km, where the@ctive and diffusive processes
are dominant.

For the same geophysical inputs, comparisons of corresponding electron density
temperature profiles are illustrated in Figs. 7 and 8, respectively. In these plots, solid |
represent FCT-ADE model results, while dashed lines represent the USU-TDIM m
results. Itis obvious that the corresponding density and temperature profiles have very
ilar shapes, particularly at night, where the profiles tend to overlap. The largest differen
found at sunrise, when the external inputs change drastically in time. During the dayt
differences exist but they do not grow with time and diminish after sunset. These day!
differences are partly caused by the fact that different space and time steps were used
two models and partly because of model differences. In particular, the FCT-ADE mc
includes H and slightly different electron energy transfer processes. At any rate, the
ferences between the two models are notimportant physically because the input paran
needed by the ionospheric models (neutral densities, temperatures, winds; collision
sections; chemical reaction rates; etc.) have a large uncertainty and the two models
within this uncertainty.

Further differences in the density profiles are also noticed below about 200 km. They
partly caused by the routines solving for the molecular ion transport. In the TDIM moc
the molecular ion species are both reactive and diffusive, while in the FCT-ADE model,
diffusive effect is neglected and photochemical equilibrium for molecular ions is assun
However, the difference in the molecular ion densities calculated by the flow models is
partly due to the difference in the calculated electron temperatures at low altitudes.
electron temperature affects the molecular ion recombination rates, which then affec
molecular ion densities. Again, this difference between the two models is not impor
physically because of the uncertainties associated with the input parameters.
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Besides a comparison with another model, our results have also been compared witl
ionospheric incoherent scatter radar data given by Wicletal. [18]. As an important
application of the FCT-ADE model, the so-called anomalbuggion density maximum
has been explained. This is another illustration of the model validity. Further details car
found in the referred paper, which is in preparation.

7. CONCLUSIONS

We have introduced the local variation concept to understand the flux-limiter in t
flux-corrected transport technique. We have also coupled this technique with the alternat
direction explicit method in a time-splitting fashion to solve the multiple systems of Navie
Stokes equations with weak viscosity and strong heat conduction. Numerical tests t
been conducted for both steady-state and time-dependent situations. Viscous effect:
heat transfer were examined through convergence tests, while the time dependence of
variables was studied through a model comparison. The fully coupled FCT-ADE numeri
techniques give simultaneous solutions of the complicated systems, and the result:
consistent with solutions obtained from a completely different method. The combin
FCT and ADE methods give a new approach to chemically reactive flows with varial
dissipation processes and, hence, are applicable to many fields of science and engine
such as aerodynamics and combustion simulations.

The time step set for the stability of convection and reaction processes also guarar
stability and convergence of the dissipation processes under normal conditions. Altho
the total variation is always guaranteed by the inclusion of physical dissipation proces:
the stability could collapse with stiff heat conduction. However, this numerical stiffness
irrelevant in the real physical world. The explicit FCT and ADE methods were applied to
inviscid flow, a strong dissipative flow, and a combined reactive, convective, and dissipa
flow with physically understandable results.

The elapsed CPU time on a Dec Alpha 2000/300 is approximately 14 h to simulate 2
of physical time, using our standard time step increment of 50 ms.

Our further work is to apply the FCT-ADE model to both low-latitude and high-latitud
thermal plasma transport problems, so that the validity of the model results can be teste
comparing with more accurate measurements. The role of the FCT technique may bec
particularly important when we model the high-latitude thermal plasma transport, whe
the flows are often supersonic. Further concern is to look into a way of utilizing part or
of the numerical dissipations introduced in the FCT technique to replace part of the des
physical dissipations. This may lead to a capability of the FCT technique to handle b
Eulerian and Navier—Stokes systems as a whole.
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